

Reference Internal – External switch modification

To allow the selection of internal or external reference selection some modifications have to be

made. The internal oscillator runs several functions with-in the unit. One signal is used for the 26

volt supply to drive the PLL, another derives the clock for the internal micro, which is no longer

used, and thirdly it provides the negative bias for the GASFet amplifiers. I decided not to touch

this oscillator as it could inadvertently cause loss of bias for the fet amplifiers and their possible

destruction.

Pin 8 of the 74AC04 buffer feeds the PLL reference via a 47 ohm resistor. This resistor was

removed and replaced by a 470 ohm resistor. A .1uf capacitor and a pin diode were added to the

PLL side of the 470 ohm resistor.

In addition, the track was cut near where the signal goes into the PLL reference link and a 56 ohm

resistor was added. Pin 9 of the interface connector has a piece of small coax (RG179) added to

connect this pin to the PLL reference input. There is a 220 ohm resistor added to the junction of

the .1uf and pin diode to provide bias for the pin diode so it can isolate the internal reference

signal to the PLL. The DC bias control line is connected to pin 8 of the interface connector and a

smd resistor is removed from the pin 8 position as per the attached photo.

When +5 volts is applied to pin 8 of the interface connector the pin diode is biased on and

effectively shorts the internal reference signal going to the PLL (leaving all other oscillator

functions running) and provides a termination to the external reference via the 56 ohm resistor.

Connecting an external reference will then operate the PLL. Any signal from -10dBm to +10dBm

will function correctly. An external reference CANNOT be connected without power applied to pin

8 of the connector otherwise beating of the two signals will occur.

Out of Lock detection

The initial out of lock detect on the unit will no longer function with the modifications listed above.

This is due to the initial way the system was designed, the O/L function from the PLL was

multiplexed with the serial data line to the microprocessor.

The external microcontroller has been programmed to either load data on a write cycle or read the

O/L function when not writing data to the PLL. The added resistor ensures the correct voltage

levels are available for the external controller to detect the O/L signal.

18F2520 Controller PCB

A universal controller board was designed based on a Microchip 18F2520 microprocessor.

The board communicates with the Elcom synthesiser via the SPI bus interface to either load the

frequency data or to read the O/L status from the synthesiser.

Port B.0 provides the out of lock signal. The pin is high on out of lock and low when locked.

This pin is 5 volt TTL from the microcontroller so caution should be exercised if connecting

to external circuits.

The ICSP header is used to program the microprocessor.

The 12 volt supply header, SPI bus connector and PortB.0 are the only connections used. With

modifications to the software the other pins can be used to select multiple frequencies from the

unit.

Interface Connector pin out

Pin 1 +8 volts

Pin 2 +12 volts

Pin 3 Earth

Pin 4 Earth

Pin 5 Serial data (SDO) connection

Pin 6 Serial clock (SCK) connection

Pin 7 Latch enable (EN)

Pin 8 Internal/External Reference select

Pin 9 External 10Mhz reference input

Pin 10 Earth

Interconnection cable from controller to Elcom

Controller SPI connector Elcom Connector

ETH --Pin 10

SDO --Pin 5

SCK --Pin 6

EN --Pin 7

The software is written in MikroBasic from MikroE.

The free version of the compiler is available from here : http://www.mikroe.com/mikrobasic/pic/

The calculation of the data for frequency selection is easily done from the Analogue Devices

application available from here :

http://www.analog.com/en/rfif-components/pll-synthesizersvcos/adf4252/products/EVAL-

ADF4252/eb.html

Download and install the application. When it loads you will have to select the ADF4252

synthesiser and ignore the warning about no USB found. This software is written for their

development board

Screen shot from software showing hex data for the values used in the program.

http://www.mikroe.com/mikrobasic/pic/
http://www.analog.com/en/rfif-components/pll-synthesizersvcos/adf4252/products/EVAL-ADF4252/eb.html
http://www.analog.com/en/rfif-components/pll-synthesizersvcos/adf4252/products/EVAL-ADF4252/eb.html

Screen shot showing PLL setup parameters

program Elcom_syntherizer

'Completed 14/08/2013

'This programs the Elcom synthesiser at 200Khz channel increments

'Monitors the LOCK status and alarms if out of lock

'Detector polarity is negative on the PLL

'One channel implemented in this software version

‘Implemented on 18F2520 microcontroller

Sub Procedure Channel_1()

 TRISC = $00 Set PortC to outputs

 SPI1_Init()

 Delay_ms(200)

 SetBit (PortC, 1)

 Delay_ms(1000)

 ClearBit (PortC, 1)

 Delay_ms(10)

 SPI1_Write ($3B) '3B 'program the RF "N" register

 SPI1_Write ($00) '00 'Set output freq to 11814Mhz

 SPI1_Write ($70) '70 ‘VCO frequency of 2362.8Mhz

 SetBit (PortC, 1)

 Delay_ms(10)

 ClearBit (PortC, 1)

 Delay_ms(10)

 SPI1_Write ($18) '18 'program the RF "R" register

 SPI1_Write ($83) '83

 SPI1_Write ($21) '21

 SetBit (PortC, 1)

 Delay_ms(10)

 ClearBit (PortC, 1)

 Delay_ms(10)

 SPI1_Write ($8E) '8E 'program the RF "control" register

 SPI1_Write ($42) '42

 SetBit (PortC, 1)

 Delay_ms(10)

 ClearBit (PortC, 1)

 Delay_ms(10)

 SPI1_Write ($06) '06 'program the Master Register register

 SPI1_Write ($03) '03

 Delay_ms(10)

 SetBit (PortC, 1)

 TRISC = $FF ‘return PortC to inputs

 Delay_ms(2000)

end sub

main:

 TRISC = $FF 'Set Port C to inputs

 TRISB = $00 ‘Set PortB to outputs

 Delay_ms(200)

 'At startup select channel not used in this version

 ' if PortD.4 = 1 then

 Channel_1

 ' end if

 ' if PortD.5 = 1 then

 ' Channel_2

 ' end if

 ' if PortD.6 = 1 then

 ' Channel_3

 ' end if

 ' if PortD.7 = 1 then

 ' Channel_4

 ' end if

run: ' check PLL lock status

 while true

 if Button(PORTC, 5, 10, 0) then

 PortB.0 = 1

 end if

 if Button(PORTC, 5, 10, 1) then 'PortB.0 = 0 when phase locked

 PORTB.0 = 0

 end if

wend

end.

